Matrix Dimension Considering Frequency Factor in Singular Value Decomposition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )

در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و...

15 صفحه اول

Clustered Sub-Matrix Singular Value Decomposition

This paper presents an alternative algorithm based on the singular value decomposition (SVD) that creates vector representation for linguistic units with reduced dimensionality. The work was motivated by an application aimed to represent text segments for further processing in a multi-document summarization system. The algorithm tries to compensate for SVD’s bias towards dominant-topic document...

متن کامل

Frequency domain representation and singular value decomposition

This contribution reviews the external and the internal representations of linear time-invariant systems. This is done both in the time and the frequency domains. The realization problem is then discussed. Given the importance of norms in robust control and model reduction, the final part of this contribution is dedicated to the definition and computation of various norms. Again, the interplay ...

متن کامل

Model averaging and dimension selection for the singular value decomposition

Many multivariate data analysis techniques for an m× n matrix Y are related to the model Y = M + E, where Y is an m × n matrix of full rank and M is an unobserved mean matrix of rank K < (m ∧ n). Typically the rank of M is estimated in a heuristic way and then the least-squares estimate of M is obtained via the singular value decomposition of Y, yielding an estimate that can have a very high va...

متن کامل

Regularized singular value decomposition: a sparse dimension reduction technique

Singular value decomposition (SVD) is a useful multivariate technique for dimension reduction. It has been successfully applied to analyze microarray data, where the eigen vectors are called eigen-genes/arrays. One weakness associated with the SVD is the interpretation. The eigen-genes are essentially linear combinations of all the genes. It is desirable to have sparse SVD, which retains the di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mechanical Engineering

سال: 2019

ISSN: 0577-6686

DOI: 10.3901/jme.2019.16.007