Matrix Dimension Considering Frequency Factor in Singular Value Decomposition
نویسندگان
چکیده
منابع مشابه
پیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )
در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و...
15 صفحه اولClustered Sub-Matrix Singular Value Decomposition
This paper presents an alternative algorithm based on the singular value decomposition (SVD) that creates vector representation for linguistic units with reduced dimensionality. The work was motivated by an application aimed to represent text segments for further processing in a multi-document summarization system. The algorithm tries to compensate for SVD’s bias towards dominant-topic document...
متن کاملFrequency domain representation and singular value decomposition
This contribution reviews the external and the internal representations of linear time-invariant systems. This is done both in the time and the frequency domains. The realization problem is then discussed. Given the importance of norms in robust control and model reduction, the final part of this contribution is dedicated to the definition and computation of various norms. Again, the interplay ...
متن کاملModel averaging and dimension selection for the singular value decomposition
Many multivariate data analysis techniques for an m× n matrix Y are related to the model Y = M + E, where Y is an m × n matrix of full rank and M is an unobserved mean matrix of rank K < (m ∧ n). Typically the rank of M is estimated in a heuristic way and then the least-squares estimate of M is obtained via the singular value decomposition of Y, yielding an estimate that can have a very high va...
متن کاملRegularized singular value decomposition: a sparse dimension reduction technique
Singular value decomposition (SVD) is a useful multivariate technique for dimension reduction. It has been successfully applied to analyze microarray data, where the eigen vectors are called eigen-genes/arrays. One weakness associated with the SVD is the interpretation. The eigen-genes are essentially linear combinations of all the genes. It is desirable to have sparse SVD, which retains the di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mechanical Engineering
سال: 2019
ISSN: 0577-6686
DOI: 10.3901/jme.2019.16.007